# A tibble: 5,685 × 22
.pred_class .pred_Yes .pred_No forested year elevation eastness northness
<fct> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>
1 No 0.0114 0.989 No 2016 464 -5 -99
2 Yes 0.636 0.364 Yes 2016 166 92 37
3 No 0.0114 0.989 No 2016 644 -85 -52
4 Yes 0.977 0.0226 Yes 2014 1285 4 99
5 Yes 0.977 0.0226 Yes 2013 822 87 48
6 Yes 0.808 0.192 Yes 2017 3 6 -99
7 Yes 0.977 0.0226 Yes 2014 2041 -95 28
8 Yes 0.977 0.0226 Yes 2015 1009 -8 99
9 No 0.0114 0.989 No 2017 436 -98 19
10 No 0.0114 0.989 No 2018 775 63 76
# ℹ 5,675 more rows
# ℹ 14 more variables: roughness <dbl>, tree_no_tree <fct>, dew_temp <dbl>,
# precip_annual <dbl>, temp_annual_mean <dbl>, temp_annual_min <dbl>,
# temp_annual_max <dbl>, temp_january_min <dbl>, vapor_min <dbl>,
# vapor_max <dbl>, canopy_cover <dbl>, lon <dbl>, lat <dbl>, land_type <fct>